Pneumatic Problems And Solutions Pdf

pneumatic problems and solutions pdf

File Name: pneumatic problems and solutions .zip
Size: 2043Kb
Published: 10.12.2020

Troubleshooting, done in a logical manner, can solve most pneumatic system problems.

As a service technician, you spend time diagnosing and troubleshooting problems and making repairs on all kinds of equipment and infrastructure. You need tools that perform in any situation. Get answers to frequently asked questions about service truck and tool performance — to ensure you always have the power to get the job done. A: Most pneumatic tools are rated at 90 psi. Increasing psi in an effort to get more power can put too much pressure into the tool, and it will eventually damage the tool by overworking the seals, bushings and mechanisms inside.

12 steps to troubleshooting pneumatic systems

Troubleshooting, done in a logical manner, can solve most pneumatic system problems. Inspect the equipment and question the operator to help solve problems in pneumatic systems.

Troubleshooting a pneumatic system has been considered an art, a science, or just hit-or-miss luck. In the minds of maintenance personnel, production managers, and plant managers, the word troubleshooting conjures up images of hours of downtime and lost production.

However, when reduced to its basic elements, troubleshooting a pneumatic system is a step-by-step procedure. Using this process can speed up the ability to determine what the problem is, the probable cause of the malfunction or failure, and a solution. Every pneumatic circuit has a logical sequence of operation that can involve timing logic, pressure sensing, position sensing, and speed regulation. Troubleshooting is initiated when the circuit does not operate properly.

Certain general diagnostic and testing steps can be applied to any troubleshooting problem, whether the problem occurred at startup of a new system or at a breakdown of an existing system. Safety should always be a prime concern of maintenance personnel. Compressed air is a volatile element in a pneumatic circuit. Air receiver tanks have exploded, causing severe injury to personnel and damage to property.

It is imperative to relieve pressure in a receiver tank prior to making any repairs. Air is also highly compressible, which is another reason to be cautious in the approach to troubleshooting a pneumatic system.

When working with overhead loads that are supported by cylinders, but not mechanically locked into position, block the load before servicing the system to prevent falling or drifting. Many pneumatic systems are controlled by electrical or electronic devices. Before attempting service or repair on these components, be sure the electrical power supply has been turned off.

Pneumatic directional control valves that use electrical solenoids to operate the valve spool are often equipped with manual overrides Fig.

Pneumatic lockout valves Fig. Ensuring a safe condition should always be the first step in troubleshooting pneumatic systems. Ask the three Ws When a breakdown in the system occurs, the pressures of downtime loom large in the minds of all concerned.

Before beginning repair of a system, stop and ask these three questions:. When did the problem begin? Was it a sudden failure or a gradual failure? Where in the machine cycle does the problem occur? Was it at startup or after the system has been operating for a while? What is or is not occurring in the system can often be answered by the system operator. Answers to questions such as slow actuator speed or inability of the actuator to move could lead to looking for a low flow rate or low pressure.

Sudden malfunctions can point to breaks and possible mechanical problems, ruptures in lines, or other catastrophic failures.

By determining the when, the problem search can be narrowed in its scope. If good maintenance records have been kept, reoccurring problems should have been recorded.

This information makes the troubleshooting process much easier. A maintenance person who stops and asks the three Ws can reduce downtime by not having to guess at what is wrong. However, if these questions do not yield a satisfactory diagnosis the maintenance person must begin the mechanics of troubleshooting by visually inspecting the machine.

Walking around the machine will often uncover problems such as worn or burst hoses, loose components, and broken components. This is the time to become familiar with the components contained in the pneumatic system.

If unfamiliar with the components, or if unfamiliar with the machine operation, ask as many pertinent questions about the system as possible. Before trying to operate the system or attempt repairs, understand the interrelations of all the components and the sub-systems found on the machine. Every pneumatic system should have two forms of documentation that will assist in troubleshooting.

One document is a schematic drawing of the pneumatic circuit Fig. The schematic is a road map. It not only explains the operating function of the components but also is a valuable diagnostic tool. The schematic contains useful information about pressure test point locations; pressure settings of regulators and other pressure valves; flow rates within the system; cylinder stroke lengths, and air motor speeds as well as a bill of materials for the system.

This type of information can aid in determining if the system is operating within its design parameters. These may contain information about the problem that has occurred. After becoming familiar with the components and operation of the pneumatic system, start the machine and operate it to get a first-hand view of the malfunction.

See if the malfunction that has been reported occurs again. While operating the machine, perform a visual inspection. Are system pressures at the levels specified on the schematic or in the maintenance manual? If there are manual controls for the machine, do they feel stiff or loose in their operation? By operating the machine, any abnormalities may become obvious, shortening troubleshooting time. Before attempting repair on the machine after it has been operated, once again check to see if power supplied to the machine has been turned off.

A malfunction in one part of the machine can be caused by a malfunction in a different subsystem on the machine. Isolating the subsystems, can help focus on one system at a time.

Narrowing the diagnostic area by isolation of subsystems requires extra precaution while operating the machine. Any lines that have been disconnected and any ports that have been opened should be plugged properly to prevent unnecessary air leakage and the entrance of contaminants. While operating the machine, a close watch should be kept on the pressures within the system, so maximum allowable pressures are not exceeded.

Caution and safety are the two keys to this diagnostic step. During the previous step, the immediate problem may be quite obvious. However, in troubleshooting, the obvious may not be the root cause.

As an example, the obvious problem may be slow actuator speed but the root cause of the problem could be insufficient lubrication, no lubrication due to a faulty lubricator Fig. After making a list of possible causes, check those items on the list and eliminate them without going back over ground previously covered. This list will also reduce the time required for troubleshooting and can eliminate the parts exchanging syndrome that often accompanies troubleshooting.

The example of slow actuator speed shows why a thorough understanding of component and system operating principles is required to accurately match the problem to the cause. After making a list and narrowing the possible causes, it is now time to make a decision on which one of the remaining causes is most likely to be the reason for the malfunction. Reaching this conclusion may, at first, appear difficult but this step is essentially the starting point for the repair portion of troubleshooting.

Up to now the system has been evaluated, now it is time to test the conclusion. In the example, testing the conclusion may be merely the need to add lubricant to the lubricator or make an adjustment to the drip rate of the lubricator. Conducting various tests such as pressure checks with an accurate gauge, checking actuator alignment, checking flow rate in the system with a flow meter, or temperature checking of the air system, can further reduce the number of causes remaining on the list and accurately pinpoint the cause.

Testing the conclusion automatically leads to deciding whether to repair or replace a component. Many factors can influence this step. Repairing parts immediately for reinstallation on the machine increases downtime, and the cost factor of this downtime is a significant consideration. To simply replace the part with a new or rebuilt component would reduce the amount of downtime; however, the question of inventory cost now becomes a factor. Another point that may influence the repair-or-replace question is component availability.

Obviously if the component is not readily available, then repairing may be the only alternative. Still another aspect may be the inhouse capability to make repairs. After the malfunction has been corrected, one final step remains, the need to report the findings. Paperwork is often neglected, but in the case of pneumatic troubleshooting it is a vital part of the procedure. This paperwork helps to maintain a record of changes, problems, and solutions that have occurred to individual machines.

Schematic updates are necessary to keep this diagnostic tool current and accurate. Report making also serves as a good reference should any problems reoccur in the future. If you have any questions about troubleshooting pneumatic circuits call Parker Hannifin Motion Control and Training Dept.

Article edited by Joseph L. Foszcz, Senior Editor, , jfoszcz reedbusiness. Troubleshooting a pneumatic system is neither art, nor science, nor should it be viewed as hit-or-miss; it is a procedural effort requiring 12 steps to accomplish.

By Joseph R. Cohn, Jr. March 10, Key Concepts Troubleshooting, done in a logical manner, can solve most pneumatic system problems. Safety should be the first consideration when troubleshooting. Sections: Think safety first Ask the three Ws Make a visual inspection Read the schematics Operate the machine Recheck all services Isolate subsystems Make a list Repair or replace Report what you did More Info: Sidebars: 12 Steps to troubleshooting pneumatic systems Troubleshooting a pneumatic system has been considered an art, a science, or just hit-or-miss luck.

Think safety first Safety should always be a prime concern of maintenance personnel. Make a visual inspection Walking around the machine will often uncover problems such as worn or burst hoses, loose components, and broken components. Read the schematics Every pneumatic system should have two forms of documentation that will assist in troubleshooting. Operate the machine After becoming familiar with the components and operation of the pneumatic system, start the machine and operate it to get a first-hand view of the malfunction.

Some questions to ask during the inspection: Is there any excessive air leakage? Are components that move, moving smoothly or erratically? Recheck all services Before attempting repair on the machine after it has been operated, once again check to see if power supplied to the machine has been turned off. Isolate subsystems A malfunction in one part of the machine can be caused by a malfunction in a different subsystem on the machine.

Control valve

Tsao, S. September 1, September ; 36 3 : — This paper investigates the mathematical problem of fluid flow at a junction. It is shown that the junction pressure at a given time can be expressed approximately in terms of the known pressures and flow rates at and near the junction at an earlier time. After the junction pressure is determined, it serves as a boundary condition for all the transmission lines meeting at the junction. Several junction networks are computed for illustrative purposes.

A control valve is a valve used to control fluid flow by varying the size of the flow passage as directed by a signal from a controller. In automatic control terminology, a control valve is termed a "final control element". The opening or closing of automatic control valves is usually done by electrical , hydraulic or pneumatic actuators. Normally with a modulating valve, which can be set to any position between fully open and fully closed, valve positioners are used to ensure the valve attains the desired degree of opening. Air-actuated valves are commonly used because of their simplicity, as they only require a compressed air supply, whereas electrically-operated valves require additional cabling and switch gear, and hydraulically-actuated valves required high pressure supply and return lines for the hydraulic fluid. The pneumatic control signals are traditionally based on a pressure range of psi 0. Electrical control now often includes a "Smart" communication signal superimposed on the mA control current, such that the health and verification of the valve position can be signalled back to the controller.

Pneumatic automation from basic principles to practical techniques EN

These lists are intended as a starting point for troubleshooting since it is impossible to include all possibilities. If one of the following situations exists, work through the source and remedy lists as possible causes. Re-check operation after checking each source before trying another source. A continuous air leak from the small vent hole in the regulator bonnet indicates a leaky main bonnet or diagram. Repair parts should be ordered at once and the regulator should be scheduled for repair.

Control valves are subject to a number of common problems. This section is dedicated to an exploration of the more common control valve problems, and potential remedies. Control valves are mechanical devices with moving parts, and as such they are subject to friction , primarily between the valve stem and the stem packing. In physics, friction is classified as either static or dynamic. Static friction is defined as frictional force holding two stationary objects together.

Problem description: The allocating device supplies aluminium valve blanks to a machining station. By operating a push button, the piston rod of the single acting cylinder is made to advance. After releasing the actuating button, the piston rod returns.

problems of pneumatic circuit design

 Ужасное уродство, правда. Но не искалеченная рука привлекла внимание Беккера. Он увидел кое-что другое. И повернулся к офицеру. - Вы уверены, что в коробке все его вещи.

Это было радостное избавление от вечного напряжения, связанного с ее служебным положением в АНБ. В один из прохладных осенних дней они сидели на стадионе, наблюдая за тем, как футбольная команда Рутгерса громит команду Джорджтауне кого университета. - Я забыла: как называется вид спорта, которым ты увлекаешься? - спросила Сьюзан.  - Цуккини. - Сквош, - чуть не застонал Беккер. Сьюзан сделала вид, что не поняла. - Это похоже на цуккини, - пояснил он, - только корт поменьше.


Troubleshooting a pneumatic system has been considered an art, a science, the probable cause of the malfunction or failure, and a solution.


99 Examples of Pneumatic Applications

Uploaded by

Выпей воды. Ты очень бледна.  - Затем повернулся и вышел из комнаты. Сьюзан взяла себя в руки и быстро подошла к монитору Хейла. Протянула руку и нажала на кнопку. Экран погас.

Сьюзан плохо его понимала. Ей показалось, что столь своевременная кончина Танкадо решила все проблемы. - Коммандер, - сказала она, - если власти говорят, что он умер от сердечного приступа, это значит, мы к его смерти не причастны. Его партнер поймет, что АНБ не несет за нее ответственности. - Не несет ответственности? - Глаза Стратмора расширились от изумления.

 Что ты говоришь. Расскажи это Чатрукьяну. Стратмор подошел ближе. - Чатрукьян мертв. - Да неужели.

 Да, какой-то повторяющийся цикл.

Я не хотел, чтобы ты узнала об этом. Я был уверен, что он тебе все рассказал. Сьюзан ощутила угрызения совести. - Я тоже хватила через край. Извините .

Common Control Valve Problems

Необходимость убрать пробелы показалась ей странной. Это была мелочь, но все же изъян, отсутствие чистоты - не этого она ожидала от Танкадо, наносящего свой коронный удар. - Тут что-то не так, - наконец сказала.  - Не думаю, что это ключ. Фонтейн глубоко вздохнул.

3 COMMENTS

Conhepape

REPLY

Problem description. – Positional sketch. – Positional sketch. The proposed solutions in part C cover at least four pages and are di- vided into: – Circuit diagram.

Bilal O.

REPLY

To browse Academia.

Rumspargepar

REPLY

Development of pneumatic systems. The solution to a control problem is worked out according to a system with documentation playing an important role in.

LEAVE A COMMENT